Steve Bell on drawing David Cameron: ‘So many years, so many condoms' video
Natural History Museum, London
From Madagascan moths to clever clams, this show brings the complex story of how and why animals see the world through different eyes vividly to life
Darwin's octopus gazes back at me from its jar, eyes deep and intelligent and sentient at least they would be if this mollusc were not a long-dead specimen preserved in chemicals. This is no distinct species, but the actual pet octopus Charles Darwin kept on board HMS Beagle. The eyes into which I peep once peeped into his.
In fact, there is an eerie sense of reciprocity throughout the Natural History Museum's mind-expanding Colour and Vision show. It makes you aware of your own eyes as you explore this exhibition about seeing in the natural world. There are few visual experiences quite as fascinating and challenging as looking at fossils, those stony images of ancient life, as intricate and subtle as any work of art and sometimes just as abstract. It is hard to make sense of the oldest fossils here: can the blobby shape of Dickinsonia really be life as we know it?
Some jellyfish have efficient eyes while lacking the brain power to process the optical information
All this beauty is desperate stuff: animals evolve colour and vision to gain advantage in the struggle for existence
Continue reading...'ARCHIPLAN' interprets the planimetric language of famous figures like zaha hadid, le corbusier, frank gehry and tadao ando, modeling their schemes as a series of dynamic labyrinths.
The post federico babina dissects famous floor plans as architectural labyrinths appeared first on designboom | architecture & design magazine.
sheets of colorful construction paper are carefully overlapped to form vast circular pools of pigment, descending towards an unseen depth.
The post maud vantours' psychedelic paper landscapes form kaleidoscopic canvasses appeared first on designboom | architecture & design magazine.
domesticated and cultivated only by its own nature, this vast concrete vegetation oscillates between order and chaos.
The post AUJIK warps urban landscapes and architectural bodies into living organisms appeared first on designboom | architecture & design magazine.
stylist anna keville joyce teamed up with photographer agustín nieto to create a sequence of compositions that illustrate a hybrid of emoticons and edibles based on three different countries.
The post quirky food emojis speak to the universal language of edibles + emoticons appeared first on designboom | architecture & design magazine.
the installation captures images of the sky which are then translated into fifty-three shades of blue.
The post martin bricelj baraga's cyanometer installation measures the blueness of the sky appeared first on designboom | architecture & design magazine.
A new exhibition claims Vincent Van Gogh's mental illness hampered his work, rather than drove his singular vision and presents fresh medical evidence about his notorious self-mutilation
Madness terrified Vincent van Gogh, yet he also wondered if it was inseparable from artistic genius. In letters to his brother Theo that prove him one of the great writers as well as artists of the 19th century, he broods more than once on an 1872 painting by Emile Wauters called The Madness of Hugo van der Goes, which shows the 15th-century Flemish painter looking a bit like Stanley Kubrick on an intense day as a victim of mental illness.
Painting, far from a release of his inner demons, was a controlled and steady labour through which he tried to stay sane
In the film Lust for Life he is portrayed as a character tragically unable to control torrents of emotion
Related: Science peers into Van Gogh's Bedroom to shine light on colors of artist's mind
Continue reading...-- This feed and its contents are the property of The Huffington Post, and use is subject to our terms. It may be used for personal consumption, but may not be distributed on a website.
-- This feed and its contents are the property of The Huffington Post, and use is subject to our terms. It may be used for personal consumption, but may not be distributed on a website.
You wouldn't let your child run up to every stranger you pass. Why would you possibly let your dog do the same?
-- This feed and its contents are the property of The Huffington Post, and use is subject to our terms. It may be used for personal consumption, but may not be distributed on a website.
-- This feed and its contents are the property of The Huffington Post, and use is subject to our terms. It may be used for personal consumption, but may not be distributed on a website.
Simon & His Camera posted a photo:
----------------------------------
Thanks for your Views & Fave & your comments are always welcome.
Please don't use this image on websites, blogs or other media without my explicit permission. © All rights reserved
Images can be used with permission commercially or non but must have creditation and link back to flickr. Please contact me via email or flickrmail.
www.flickr.com/photos/simon__syon/
An international team of scientists has identified a common phenomenon in galaxies that could explain why huge numbers of them turn into cosmic graveyards. Galaxies begin their existence as lively and colorful spiral galaxies, full of gas and dust, and actively forming bright new stars. However, as galaxies evolve, they quench their star formation and turn into featureless deserts, devoid of fresh new stars, and generally remain as such for the rest of their evolution. But the mechanism that produces this dramatic transformation and keeps galaxies turned off, is one of the biggest unsolved mysteries in galaxy evolution.
Now, thanks to the new large SDSS-IV MaNGA survey of galaxies, a collaborative effort led by the University of Tokyo and involving the University of Oxford has discovered a surprisingly common new phenomenon in galaxies, dubbed "red geysers", that could explain how the process works. Researchers interpret the red geysers as galaxies hosting low-energy supermassive black holes which drive intense interstellar winds. These winds suppress star formation by heating up the ambient gas found in galaxies and preventing it to cool and condense into stars.
Lead author Dr Edmond Cheung, from the University of Tokyo's Kavli Institute for the Physics and Mathematics of the Universe, said: 'Stars form from the gas, but in many galaxies stars were found not to form despite an abundance of gas. It was like having deserts in densely clouded regions. We knew quiescent galaxies needed some way to suppress star formation, and now we think the red geysers phenomenon may represent how typical quiescent galaxies maintain their quiescence.'
'Stars form from the gas, a bit like the drops of rain condense from the water vapour. And in both cases one needs the gas to cool down, for condensation to occur. But we could not understand what was preventing this cooling from happening in many galaxies,' said Co-author Dr Michele Cappellari, from the Department of Physics at Oxford University. 'But when we modeled the motion of the gas in the red geysers, we found that the gas was being pushed away from the galaxy center, and escaping the galaxy gravitational pull.'
'The discovery was made possible by the amazing power of the ongoing MaNGA galaxy survey' said Dr Kevin Bundy, from the University of Tokyo, the overall leader of the collaboration. 'The survey allows us to observe galaxies in three dimensions, by mapping not only how they appear on the sky, but also how their stars and gas move inside them.'
Using a near-dormant distant galaxy named Akira as a prototypical example, the researchers describe how the wind's driving mechanism is likely to originate in Akira's galactic nucleus. The energy input from this nucleus, powered by a supermassive black hole, is capable of producing the wind, which itself contains enough mechanical energy to heat ambient, cooler gas in the galaxy and thus suppress star formation.
The researchers identified an episodic quality to these jets of wind, leading them to the name red geysers (with 'red' colour due to the lack of blue young stars). This phenomenon, discussed in the paper with reference to Akira, appears surprisingly common and could be generally applicable to all quiescent galaxies.
The study made use of optical imaging spectroscopy from the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory (SDSS-IV MaNGA) program.
Does the image at the top of the page show one galaxy or two ? This question came to light in 1950 when astronomer Art Hoag chanced upon this unusual extragalactic object. On the outside is a ring dominated by bright blue stars, while near the center lies a ball of much redder stars that are likely much older. Between the two is a gap that appears almost completely dark. How Hoag's Object formed remains unknown, although similar objects have now been identified and collectively labeled as a form of ring galaxy. Genesis hypotheses include a galaxy collision billions of years ago and the gravitational effect of a central bar that has since vanished. The above photo taken by the Hubble Space Telescope in July 2001 revealed unprecedented details of Hoag's Object.
The Daily Galaxy via University of Oxford
Image credit: http://asterisk.apod.com/viewtopic.php?t=31821
The European Space Agency's orbiting X-ray observatory, XMM-Newton, has proved the existence of a "gravitational vortex" around a black hole. The discovery, aided by NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission, solves a mystery that has eluded astronomers for more than 30 years, and will allow them to map the behavior of matter very close to black holes. It could also open the door to future investigations of Albert Einstein's general relativity.
Matter falling into a black hole heats up as it plunges to its doom. Before it passes into the black hole and is lost from view forever, it can reach millions of degrees. At that temperature it shines X-rays into space.
In the 1980s, pioneering astronomers using early X-ray telescopes discovered that the X-rays coming from stellar-mass black holes in our galaxy flicker. The changes follow a set pattern. When the flickering begins, the dimming and re-brightening can take 10 seconds to complete. As the days, weeks and then months progress, the period shortens until the oscillation takes place 10 times every second. Then, the flickering suddenly stops altogether. The phenomenon was dubbed the Quasi Periodic Oscillation (QPO).
"It was immediately recognized to be something fascinating because it is coming from something very close to a black hole," said Adam Ingram, University of Amsterdam, the Netherlands, who began working to understand QPOs for his doctoral thesis in 2009.
During the 1990s, astronomers had begun to suspect that the QPOs were associated with a gravitational effect predicted by Einstein's general relativity: that a spinning object will create a kind of gravitational vortex.
"It is a bit like twisting a spoon in honey. Imagine that the honey is space and anything embedded in the honey will be "dragged" around by the twisting spoon," explained Ingram. "In reality, this means that anything orbiting a spinning object will have its motion affected." In the case of an inclined orbit, it will "precess."
This means that the whole orbit will change orientation around the central object. The time for the orbit to return to its initial condition is known as a precession cycle.
In 2004, NASA launched Gravity Probe B to measure this so-called Lense-Thirring effect around Earth. After painstaking analysis, scientists confirmed that the spacecraft would turn through a complete precession cycle once every 33 million years.
Around a black hole, however, the effect would be much more noticeable because of the stronger gravitational field. The precession cycle would take just a matter of seconds or less to complete. This is so close to the periods of the QPOs that astronomers began to suspect a link.
Ingram began working on the problem by looking at what happened in the flat disc of matter surrounding a black hole. Known as an accretion disc, it is the place where material gradually spirals inwards towards the black hole. Scientists had already suggested that, close to the black hole, the flat accretion disc puffs up into a hot plasma, in which electrons are stripped from their host atoms. Termed the hot inner flow, it shrinks in size over weeks and months as it is eaten by the black hole. Together with colleagues, Ingram published a paper in 2009 suggesting that the QPO is driven by the Lense-Thirring precession of this hot flow. This is because the smaller the inner flow becomes, the closer to the black hole it would approach and so the faster its Lense-Thirring precession cycle would be. The question was: how to prove it?
"We have spent a lot of time trying to find smoking gun evidence for this behavior," said Ingram.
The answer is that the inner flow is releasing high-energy radiation that strikes the matter in the surrounding accretion disc, making the iron atoms in the disc shine like a fluorescent light tube. The iron releases X-rays of a single wavelength—referred to as "a spectral line."
Because the accretion disc is rotating, the iron line has its wavelength distorted by the Doppler effect. Line emission from the approaching side of the disc is squashed—blue shifted—and line emission from the receding disc material is stretched—red shifted. If the inner flow really is precessing, it will sometimes shine on the approaching disc material and sometimes on the receding material, making the line wobble back and forth over the course of a precession cycle.
Seeing this wobbling is where XMM-Newton came in. Ingram and colleagues from Amsterdam, Cambridge, Southampton and Tokyo applied for a long-duration observation that would allow them to watch the QPO repeatedly. They chose black hole H 1743-322, which was exhibiting a four-second QPO at the time. They watched it for 260,000 seconds with XMM-Newton. They also observed it for 70,000 seconds with NASA's NuSTAR X-ray observatory.
"The high-energy capability of NuSTAR was very important," Ingram said. "NuSTAR confirmed the wobbling of the iron line, and additionally saw a feature in the spectrum called a 'reflection hump' that added evidence for precession."
After a rigorous analysis process of adding all the observational data together, they saw that the iron line was wobbling in accordance with the predictions of general relativity. "We are directly measuring the motion of matter in a strong gravitational field near to a black hole," says Ingram.
This is the first time that the Lense-Thirring effect has been measured in a strong gravitational field. The technique will allow astronomers to map matter in the inner regions of accretion discs around black holes. It also hints at a powerful new tool with which to test general relativity.
Einstein's theory is largely untested in such strong gravitational fields. So if astronomers can understand the physics of the matter that is flowing into the black hole, they can use it to test the predictions of general relativity as never before - but only if the movement of the matter in the accretion disc can be completely understood.
"If you can get to the bottom of the astrophysics, then you can really test the general relativity," says Ingram. A deviation from the predictions of general relativity would be welcomed by a lot of astronomers and physicists. It would be a concrete signal that a deeper theory of gravity exists.
Larger X-ray telescopes in the future could help in the search because they are more powerful and could more efficiently collect X-rays. This would allow astronomers to investigate the QPO phenomenon in more detail. But for now, astronomers can be content with having seen Einstein's gravity at play around a black hole.
"This is a major breakthrough since the study combines information about the timing and energy of X-ray photons to settle the 30-year debate around the origin of QPOs. The photon-collecting capability of XMM-Newton was instrumental in this work," said Norbert Schartel, ESA Project Scientist for XMM-Newton.
The results reported in this article are published in "A quasi-periodic modulation of the iron line centroid energy in the black hole binary H 1743-322", by Adam Ingram and colleagues, to appear in Monthly Notices of the Royal Astronomical Society, 461 (2): 1967-1980
The Daily Galaxy via Monthly Notices of the Royal Astronomical
Image credit: Tomoharu Oka (Keio University)
europeanspaceagency posted a photo:
Credit: ESA-Stephane Corvaja, 2016
NASA Goddard Photo and Video posted a photo:
NASA's Suomi NPP satellite detected thousands of fires burning in central Africa on July 11, 2016. The fires are represented by the multitudes of red dots. Most of the fires burn in grass or cropland. The location, widespread nature, and number of fires suggest that these fires were deliberately set to manage land. Places where traditional plots of open land is not available because the vegetation in the area is dense are the places where "slash and burn" agriculture is practiced most often. These regions include parts of Africa, northern South America, and Southeast Asia, where an abundance of grasslands and rainforests are found.
Although most parts of the world outlaw this type of agriculture due to the fact that the smoke from these (or any) fires is a health hazard, the method of agriculture continues because it is the easiest and lowest cost solution to clearing fields for next year's crops.
The Suomi NPP satellite is a joint mission between NASA, NOAA and the U.S. Department of Defense.
NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team.
A new study of the early universe reveals how it could have been formed from an older collapsing universe, rather than being brand new. The universe is currently expanding and it is a common theory that this is the result of the ‘Big Bang' the universe bursting into existence from a point of infinitely dense and hot material.
"Our model's ability to give a possible solution to the problem of the Big Bang opens the way to new explanations for the formation of the universe," said Steffen Gielen, a theorectical physicist with the Imperial College of London.
However, physicists have long debated this idea as it means the universe began in a state of complete breakdown of physics as we know it. Instead, some have suggested that the universe has alternated between periods of expansion and contraction, and the current expansion is just one phase of this.
This so-called ‘Big Bounce' idea has been around since 1922, but has been held back by an inability to explain how the universe transitions from a contracting to an expanding state, and vice versa, without leading to an infinite point.
Now, in a new study published today in Physical Review Letters, Dr Steffen Gielen from Imperial College London and Dr Neil Turok, Director of the Perimeter Institute for Theoretical Physics in Canada, have shown how the Big Bounce might be possible.
Cosmological observations suggest that during its very early life, the universe may have looked the same at all scales meaning that the physical laws that that worked for the whole structure of the universe also worked at the scale of the very small, smaller than individual atoms. This phenomenon is known as conformal symmetry.
In today's universe, this is not the case particles smaller than atoms behave very differently to larger matter and the symmetry is broken. Subatomic particle behaviour is governed by what is called quantum mechanics, which produces different rules of physics for the very small.
For example, without quantum mechanics, atoms would not exist. The electrons, as they whizz around the nucleus, would lose energy and collapse into the centre, destroying the atom. However, quantum mechanics prevents this from happening.
In the early universe, as everything was incredibly small, it may have been governed solely by the principles of quantum mechanics, rather than the large-scale physics we also see today.
In the new study, the researchers suggest that the effects of quantum mechanics could prevent the universe from collapsing and destroying itself at end of a period of contraction, known as the Big Crunch. Instead, the universe would transition from a contracting state to an expanding one without collapsing completely.
Dr Gielen said: “Quantum mechanics saves us when things break down. It saves electrons from falling in and destroying atoms, so maybe it could also save the early universe from such violent beginnings and endings as the Big Bang and Big Crunch.”
Using the idea that the universe had conformal symmetry at its beginning, and that this was governed by the rules of quantum mechanics, Dr Gielen and Dr Turok built a mathematical model of how the universe might evolve.
The model contains a few simple ingredients that are most likely to have formed the early universe, such as the fact that it was filled with radiation, with almost no normal matter. With these, the model predicts that the effect of quantum mechanics would allow the universe to spring from a previous universe that was contracting, rather than from a single point of broken physics.
Dr Turok said: “The big surprise in our work is that we could describe the earliest moments of the hot Big Bang quantum mechanically, under very reasonable and minimal assumptions about the matter present in the universe. Under these assumptions, the Big Bang was a ‘bounce', in which contraction reversed to expansion.”
The researchers are now investigating how this simple model can be extended to explain the origin of perturbations to the simple structure of the universe, such as galaxies. “Our model's ability to give a possible solution to the problem of the Big Bang opens the way to new explanations for the formation of the universe,” said Dr Gielen.
'Perfect Quantum Cosmologial Bounce' by S Gielen and N Turok is published in Physical Review Letters.
The Daily Galaxy via Imperial College London